Personalizing, Differentiating and Engaging Through Technology

A technology inventory and plan for teaching high school physics mechanics topics through

the thematic study of drones

Benson Wallace

American College of Education

SCI5213

Dr Stephanie Schaefer

31st July 2022

Personalizing, Differentiating and Engaging Through Technology

A technology inventory and plan for teaching high school physics mechanics topics through

the thematic study of drones

This paper describes the technology resources required to support the teaching of the International Baccalaureate Physics course Mechanics topics 2.1 through 2.4 (Siegel, 2022) as part of an integrated STEM project based on the physics of drones. The inventory required to deliver the series of five lessons includes the following:

- A class set of LiteBee Brix III toy drones (or similar)
- A site license for Vernier's Logger Pro 3 software
- A class set of Vernier dual-range force sensors
- Student laptops able to run Logger Pro 3, Google Suite and Desmos

If an alternative drone model is chosen, it should be rugged, suitable for use in a classroom environment, and with a minimal learning curve. It is not the intent of this project to teach students coding skills; the purpose of the drone is to demonstrate the physics principles involved and provide opportunities for hands-on experimentation. Vernier's Logger Pro 3 software runs on both Windows and Mac operating systems and does not need to be distributed to centrally managed student laptops via an IT department (although it can be); students at "bring your own device" schools can easily download and install it themselves once given the site license details. Each Vernier dual-range force sensor will require a Vernier sensor interface such as the EasyLink or LabQuest Mini. As Redman noted in 2017, the "E" component of the STEM acronym is still an often neglected and misunderstood topic among K-12 educators. It is hoped that this 5-lesson series and accompanying technology plan will help redress that balance somewhat by supporting physics educators in including engineering and design activities in their lessons.

Technology Plan

Activity Description	Technology Tools and Resources	Usage Notes
Introduction		Have students create a project
	• Laptops	folder in Google Drive and share
Project introduction and	Google Suite	it with you. Remind them to
competitor research.	• Web browser	bookmark links that they will
		need to visit often. Ask them to
		start a project research document
		in a shared Google document
		inside their project folder. Some
		project teams may wish to
		experiment with 3rd party team
		or project management software.
Guided Practice		Although the focus of this
	• Laptops	activity should be "back of the
Order of magnitude	Web browser	envelope" calculations (meaning
calculations for drone		students should be sketching and
motion graphs.		writing in notebooks and/or on
		whiteboards or walls), students
		should be encouraged to leverage
		technology, for example by
		looking up typical values or
		checking to see if a graph makes
		sense in Desmos.
Independent Practice		Support students with restricting
	• <u>Desmos</u>	domain and range in Desmos.
Setting up slide deck	Google Slides	Remind students to login with
and Desmos motion		their Google accounts and save
graph templates		each graph before starting the
		next one. Ask them to create a
		Google Slides deck inside their
		project folder and add one slide
		for each motion graph that they

	plan to present.
--	------------------

Activity Description	Technology Tools and Resources	Usage Notes
Introduction Drone movement familiarisation and acceleration estimate.	 <u>LiteBee Brix III</u> Laptops Web browser 	Have one pre-assembled toy drone ready for groups who are struggling to get theirs working "out of the box". Encourage students to check their acceleration estimates by searching for examples online.
Guided Practice Thrust and clamping force estimates.	LaptopsWeb browser	Although the focus of this activity should again be "back of the envelope" calculations (see Lesson 1 notes), students should be encouraged to leverage technology, for example by looking up typical values of (for example) coefficient of friction. Remind students to compile results in their shared project research document.
Independent Practice Measuring drone forces and accelerations experimentally.	 <u>Vernier force sensor</u> <u>Logger Pro software</u> <u>LiteBee Brix III</u> 	Ensure that a variety of "maker space" type materials are on hand so that students can devise ways of connecting the drones and the force sensors. Encourage students to refer to the <u>force sensor user</u> <u>manual</u> to troubleshoot problems rather than relying on you to get them "unstuck".

Activity Description	Technology Tools and Resources	Usage Notes
Introduction Battery energy density problem discussion.	LaptopsWeb browser	Ask students to summarise any points relevant to the design and/or operation of drones in their shared project research document.
Guided Practice		Although the focus of this
Power and energy requirements calculations; battery and shock spring sizing calculations.	LaptopsWeb browser	activity should again be "back of the envelope" calculations (see Lesson 1 notes), students should be encouraged to leverage technology, for example by looking up typical values of (for example) spring sizes or efficiency. Remind students to compile results in their shared project research document.
Independent Practice	Dermos	Project teams should continue
Adding new work from Lessons 2 and 3 to Google slide decks.	 <u>Desmos</u> Google Slides 	decks from Lesson 1. New slides should just summarise key results of new calculations; the details can be saved in their shared project documents. Remind teams that they should go back and update their Desmos motion graphs based on recent calculations.

Activity Description	Technology Tools and Resources	Usage Notes
Introduction Tyranny of the rocket equation discussion.	LaptopsWeb browser	Ask students to summarise any points relevant to the design and/or operation of drones in their shared project research document.
Guided Practice Rotor air flow and payload ejection mechanism calculations.	LaptopsWeb browser	Although the focus of this activity should again be "back of the envelope" calculations (see Lesson 1 notes), students should be encouraged to leverage technology, for example by looking up typical values of (for example) rotor diameter or air density. Remind students to compile results in their shared project research document.
Independent Practice Further experimental work - either refining previous experiments or investigating new variables.	 <u>Vernier force sensor</u> <u>Logger Pro software</u> <u>LiteBee Brix III</u> 	Ensure that a variety of "maker space" type materials are on hand so that students can devise ways of (for example) connecting the drones and the force sensors, or adding mass to the drones to simulate flights with payload. At this point, assist struggling groups with the use of force sensors and/or video tracking features so that they have some results to add to their presentations.

Activity Description	Technology Tools and Resources	Usage Notes
Introduction First principles thinking discussion.	LaptopsWeb browser	Ask students to summarise any points relevant to the design and/or operation of drones in their shared project research document.
Guided Practice Scaling up calculations from Lessons 1-4 for each project team's chosen application.	 Laptops Web browser <u>Desmos</u> Google Slides 	Project teams should update their Google slide decks, shared research documents and Desmos graphs with new values as they go.
Independent Practice Iteratively refining design calculations and slide decks in preparation for a hypothetical seed funding event.	 Laptops Web browser <u>Desmos</u> Google Slides <u>Logger Pro software</u> 	Assist groups in ensuring that their slide decks are "event appropriate". Point them towards the Google Slides "Explore" feature and remind them to use summary tables for calculation results rather than sentences. Encourage them to include graphs of experimental results in their presentations to improve credibility.

Conclusion

By explicitly connecting high school physics topics with an engineering and design context, we can increase the appeal of STEM learning to a more diverse range of students, catering to those who prefer hands-on, experiential learning to the traditional analytical approach. Moreover, by situating the learning in an authentic project management context, we naturally integrate the 5 Key Elements of Differentiation as described in McGee (2017). Personalization also occurs naturally as student teams choose a unique drone application that they are interested in researching and designing. Finally, we can view the teaching of physics through drones, a technology that has only become widely available relatively recently, as an example of the "R" (Reimagine) in Puentedura's SAMR Model (2015). By using drones to support the teaching of physics concepts in ways that were previously not possible, we can "reimagine" the way that Newtonian mechanics is taught and unlock new methods (and higher levels) of differentiation, personalization and engagement.

References

- McGee, C. (2017). Artful teaching and science investigations: A perfect match. *Gifted Child Today*, *41*(1), 41–53. https://doi.org/10.1177/1076217517735861
- Redman, C. (2017). Would increasing engineering literacies enable untapped opportunities for STEM education? *Theory Into Practice*, 56(4), 318–326. https://doi.org/10.1080/00405841.2017.1350493
- Puentedura, R. (2015, October 14). *SAMR: A brief introduction*. Ruben R. Puentedura's Blog. Retrieved July 31, 2022, from <u>http://hippasus.com/blog/archives/227</u>
- Seigel, D. (2022, February 2). The complete IB Physics syllabus: SL and HL. PrepScholar. Retrieved July 24, 2022, from https://blog.prepscholar.com/complete-ib-physicssyllabus-sl-hl