Overview: Integrated C	urricular Unit with Differentiation		
Unit Title: Putting Algorithms On The Map			
Theoretical Framework: Constructionism			
Unit Theme: Algorithms			
Integration Pathway: Shared Model (Fogarty, 1992)			
Problem-Solving Task: Design an app that helps users quickly locat	e the nearest location of a franchise or service		
Unit Objectives:			
1.Understand and use mathematical techniques commonly used in			
2.Design and implement Python code algorithms and user interfac			
3.Experience the process of funding and marketing a mobile applic	cation		
Standards/Guidelines/Expectations by Discipline			
Discipline 1: Mathematics	Discipline 2: Digital Design		
Iterations	Flow charts		
Inequalities	Python syntax		
Voronoi diagrams	User Interface Design		
Combinations	Market research		
Information theory	User surveys		
Desired Unit Results			
Six As (How will you incorporate each A in the unit?			
1. Authenticity	Students document and share their work using the same software		
	tools as those in the workplace		
	• Students can choose to target their app towards a user group that		
	frequents locations that are meaningful in their own lives		
	The unit culminates in an app launch event		
2. Academic Rigor	 Lessons and project deliverables will be mapped to the 		
	appropriate discipline specific KUDs		
	Adult experts check student content knowledge before allowing		
	students to proceed with work beyond certain points		
3. Applied Learning	Students complete all tasks in their project teams for the duration		
	of the unit, so that newly acquired disciplinary knowledge and		
	skills are immediately applied in the project context		
	Students learn and apply project management techniques		

4. Active Exploration	 The results of spreadsheets, code, and graphs created as part of disciplinary lessons are used in the larger project context Students collect and analyze authentic data such as search traffic, downloads and user surveys Students create a "pitch deck" and present it to a panel of potential investors from the school community
5. Adult Relationships	 Classroom visits by industry experts to consult with student project teams Guest speaker to attend the project launch Community experts have input into the project scope and assessment criteria
6. Assessment	 A rubric will be used to judge the quality of student-developed project success criteria and use of said criteria to self-assess Assessment will include integrated communication forms such as app support documentation and promotional material, and project management documentation such as a project journal and lessons learned file
Essential Questions (List at least 3-5 which connect the disciplines.) These questions will help students discover the natural connections	among the specific discipline fields:
• How can we design a product for an online audience?	
How do brands decide on new store locations?	
 Should organizations always use mathematics to make decision 	sions?
Learners will know: refer to specific lesson objectives	Learners will be skilled at: refer to specific lesson objectives

Evidence of Learning					
Evaluative Criteria:	Assessme	nt Evidence			
 Accuracy of mathematical calculations Efficiency of code and algorithms Persuasiveness of pitch deck slides 	Formative – see lesson details below Summative – see lesson details below Culminating - app launch event Performance Task – pitch deck presentation Other Evidence – project documentation				
Si	Lesson Plan 1 Summary of Key Learning Interactions and Instruction				
	Lesson 1: Constructing Voro	noi Diagrams			
-determine the equation of a perpendicular bi -construct a Voronoi diagram by finding the in -interpret the meaning of Voronoi regions on -create shaded Voronoi diagrams on digital ma Formative Assessment: Desmos activity that in	tersection point of 3 perpendicul a map in a real-life context aps using Geogebra	ar bisectors	egions of closest		
proximity to certain locations on a map. Summative Assessment: students create a "loc diagram, constructed from real-world data po	oks-like" prototype of their main	app screen in Geogebra by overlaying a	-		
Interactions/Activities	Differentiation	Materials/Resources	Field Experiences/Adult Relationships		
Description: Equations of perpendicular bisectors Steps: -short Desmos activity to explore concept	Intervention: perpendicular gra finding the equation of a straig revision material		Find two points on a map of their city that will be used in their app and find the		
-teacher addresses misconceptions and formalizes the process	Extension: finding the shortest a line to a point and application	distance from (Desmos Activity)	equation of the perpendicular		

-perpendicular bisectors quiz to check for		bisector between
understanding		them.

Intervention:Further revision material on finding the equation of a perpendicular bisectorExtension:Delaunay Triangulations activity (includes pseudocode and iterative loop)Intervention:Review of representing one dimensional inequalities on a number lineExtension:Defining regions on graphs using multiple inequalities	<u>"Voronoi Diagrams</u> <u>and Food Deserts"</u> (Desmos Activity) <u>Graphing Inequalities</u> (Geogebra Activity)	Students continue to find and process data that will be used in their app. The "Food Deserts" aspect of the Desmos activity is linked to social entrepreneurship Students continue to find and process data that will be used in their app.		
command to check their Voronoi diagram calculations from the previous activity Lesson Plan 2 Summary of Key Learning Interactions and Instruction Lesson 2: Implementing algorithms with Python code Learning Objectives				
low charts ibrary of commonly used code structures noi diagram when given an input of a set of map stions multiple-choice quiz on algorithms and P	o coordinates ython. Appropriate multip	-		
	Further revision material on finding the equation of a perpendicular bisector Extension: Delaunay Triangulations activity (includes pseudocode and iterative loop) Intervention: Review of representing one dimensional inequalities on a number line Extension: Defining regions on graphs using multiple inequalities Lesson Plan 2 ummary of Key Learning Interactions and Instruc- esson 2: Implementing algorithms with Python of cost functions, and describe their importance to low charts ibrary of commonly used code structures noi diagram when given an input of a set of mag- stions multiple-choice quiz on algorithms and Pythons	Further revision material on finding the equation of a perpendicular bisector "Voronoi Diagrams and Food Deserts" (Desmos Activity) Extension: Delaunay Triangulations activity (includes pseudocode and iterative loop) (Desmos Activity) Intervention: Review of representing one dimensional inequalities on a number line Graphing Inequalities (Geogebra Activity) Extension: Defining regions on graphs using multiple inequalities Geogebra Activity) Lesson Plan 2 ummary of Key Learning Interactions and Instruction esson 2: Implementing algorithms with Python code code their importance to app design low charts		

Voronoi diagram from the Lesson 1 Summative			
Interactions/Activities	Differentiation	Materials/Resources	Field
			Experiences/Adult
			Relationships
Description: the mathematics of why	Intervention:		
different algorithms have different			
computational costs	Review of logarithms and exponents	"The Mathematics of	If possible, an
		<u>Big O</u> "	industry partner (web
Steps:	Extension:		developer) could visit
-the handshake problem and its relationship			during this lesson and
to finding all possible pairs of points on a	Formal treatment of information theory		open by discussing
Voronoi diagram			the importance of
-online interactive lesson on the different			efficient code
types computational cost functions that			
result from different algorithms			
-reflection on why this important to their app			
design project			

Description: algorithms and Python code	Intervention:		
syntax		Pseudocode Tutorial	Continued
	Partially filled templates for students who		consultation with
Steps:	are struggling to put the pieces together	Python Diagnostic	industry expert
-online interactive lesson on how to write		Questions Quiz	
pseudocode	Extension:		
-students represent their pseudocode using			
flowcharts	Open-ended design challenges for students		
-students are given a set of Python code	who finish early, i.e. "construct an algorithm		
building blocks so that they can rearrange	that does the following"		
them to implement their pseudocode			
-formative Python code quiz			
Description: constructing Voronoi diagrams	Intervention:		
from a set of coordinate points using Python		How to find the	Continued
code (practicing the techniques needed to	Struggling students first try to implement	nearest hospital with	consultation with
create a "works like" prototype)	with simpler case (the three-point Voronoi	a Voronoi diagram	industry expert
	diagram from Lesson 1)		
Steps:			Students continue to
-students run the code in the online tutorial	Extension:		find and process data
"How to find the nearest hospital with a			that will be used in
Voronoi diagram", then modify the data to	Continue with Delaunay triangulations		their app.
what will be used in their app	activity – implement the pseudocode as		
	Python code		
	Lesson Plan 3		
c,	ummary of Key Learning Interactions and Instruc	tion	
30	animaly of Key Learning interactions and instruc		
Lesson 3: Mob	ile app user interface design and culminating evo	ent prepraration	
Learning Objectives			
-create a simple mobile application user interf	ace using Figma		
-collect, analyze and present data for the purp	oses of convincing potential investors of the ma	rket potential for a mobi	le application
-create and present "pitch deck" slides to pote	ential investors		
-create a website with multimedia to promote	a mobile application product		
-manage team project documentation using an appropriate online platform			
Formative Assessment: Online tutorial in Figm	a, an app development platform that is free for e	educational use	
Summative Assessment: Students submit their	app user interface design in Figma		

Performance Assessment: Simulated early round venture capital event in which students present a pitch deck to a panel of hypothetical investors. The slides would address each of the criteria in a generic social entrepreneurship project evaluation rubric and include their analysis of search traffic, download and user survey data.

Culminating Assessment: Students exhibit their app demo and website, including a promotional video, FAQ and user technical support documentation, at a trade show-style event. If time and facilities allow, student teams could also design a product logo and 3D print merchandise samples.

Interactions/Activities	Differentiation	Materials/Resources	Field
			Experiences/Adult
			Relationships
Description: designing user interfaces for	Intervention:		
mobile apps		Introduction to	Students will use the
	Pre-made Figma templates	interfaces in	criteria developed to
Steps:		computer science	evaluate their own
-online interactive lesson on the use of	Extension:		user interfaces
interfaces as abstractions and how they		Intro to Figma	
collect user inputs	The ethics of the Gale-Shapley algorithm and	<u>tutorial</u>	
-learning the skills required to create an app	the stable matching problem		
user interface in Figma			
-evaluating the user interfaces of commonly			
used apps and coming up with criteria for			
what makes a good user interface			
Description: preparation for the performance	Intervention:		
assessment		Performance	Students consult with
	Review of basic data presentation techniques	assessment rubric	their assigned
Steps:	and how to create them (bar charts, pie		mentors while
-discussion and analysis of performance	charts, line graphs, etc)	Google Sheets	developing their pitch
assessment rubric			deck slides
-overview of useful metrics and data	Extension:	Canva or other	
presentation techniques to use		infographic tool	
	Explore the web traffic analysis free features		
	at <u>similarweb.com</u>		
Description: preparation for the culminating	Intervention:		
assessment		Google Sites Tutorial	Students continue to
	Pre-made website templates		consult with their
Steps:		HTML Tutorials	mentors in the lead

-introduction to free website creation, video	Extension:	up to the culminating
editing and logo design tools		event
-choosing an online project documentation	Commonly used HTML code edits for website	
platform (introduction to and comparison of	customization	
Asana and Basecamp)		